Urol. praxi. 2025;26(2):79-86 | DOI: 10.36290/uro.2025.041

Emerging trends in telemedicine and artificial intelligence in urology

MUDr. Martin Malý1, MUDr. Alžběta Kantorová1, doc. MUDr. David Zogala, Ph.D.2, doc. MUDr. Otakar Čapoun, Ph.D., FEBU1, prof. MUDr. Viktor Soukup, Ph.D., FEBU, MHA1
1 Urologická klinika VFN a 1. LF UK, Praha
2 Ústav nukleární medicíny VFN a 1. LF UK, Praha

This article explores the emerging trends and technologies in urology, focusing on telemedicine and artificial intelligence. It provides a brief overview of the benefits of telemedicine and its impact on the patient-physician interactions. The article subsequently explores in detail the use of artificial intelligence, which is currently gaining considerable interest from both general public and medical professionals. Its potential in urology has been tested in a number of clinical studies, particularly in the field of uro-oncology and, to a lesser extent, in benign urological diseases. The aim of this article is to identify the key advances in this rapidly evolving field, while also highlighting the current limitations of its implementation into clinical practice.

Keywords: telemedicine, artificial intelligence, machine learning, deep learning, robotic surgery, uro-oncology.

Accepted: May 19, 2025; Published: June 26, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Malý M, Kantorová A, Zogala D, Čapoun O, Soukup V. Emerging trends in telemedicine and artificial intelligence in urology. Urol. praxi. 2025;26(2):79-86. doi: 10.36290/uro.2025.041.
Download citation

References

  1. . Kay M. WHO global survey of telemedicine. Telemed Telelcare 2010;16:471-472. Go to original source... Go to PubMed...
  2. . Rodriguez SM, Loeb S, Teoh JY, et al. Telemedicine and Smart Working: Recommendations of the European Association of Urology. Eur Urol. 2020;78(6):812-819. Go to original source... Go to PubMed...
  3. . Ellimoottil C, Skolarus T, Gettman M, et al. Telemedicine in Urology: State of the Art. Urology. 2016;94:10-16. Go to original source... Go to PubMed...
  4. . Ohannessian R, Duong T, Odone A. Global Telemedicine Implementation and Integration Within Health Systems to Fight the COVID-19 Pandemic: A Call to Action. JMIR Public Health Surveill. 2020;6(2):e18810. Go to original source... Go to PubMed...
  5. . Novara G, Checcucci E, Crestani A, et al. Telehealth in Urology: A Systematic Review of the Literature. How Much Can Telemedicine Be Useful During and After the COVID-19 Pandemic? Eur Urol. 2020;78(6):786-811. Go to original source... Go to PubMed...
  6. . Symeonidis EN, Veneziano D, Borgmann H, et al. Telemedi­cine in Urology: Where Have We Been and Where Are We Hea­ding? Eur Urol Open Sci. 2023;50:106-112. Go to original source... Go to PubMed...
  7. . O eReceptu [Internet]. 2024 SÚKL. [cited 2024 Dec 24] Available from: https://epreskripce.gov.cz/o-ereceptu/.
  8. . Péče o zdraví online, rychle a s úsměvem [Internet]. uLékaře.cz, s.r.o. [cited 2024 Dec 24]. Available from: https://www.ulekare.cz/sluzba.
  9. . Einthoven W. Le télécardiogramme. Archives Internationales de Physiologie 1906;4:132-164.
  10. . Wittson CL, Benschoter R. Two-way television: helping the medical center reach out. American Journal of Psychiatry 1972;129(5):624-627. Go to original source... Go to PubMed...
  11. . Foote D, Parker, D, Hudson H, et al. Telemedicine in Alaska: The ATS-6 satellite biomedical demonstration. National Technical Information Service, 1976.
  12. . Bashshur RL, Shannon GW. History of Telemedicine: Evolution, Context, and Transformation. New Rochelle, NY: Mary Ann Liebert; 2009.
  13. . Mann DM, Chen J, Chunara R, et al. Nov O. COVID-19 transforms health care through telemedicine: Evidence from the field. J Am Med Inform Assoc. 2020;27(7):1132-1135. Go to original source... Go to PubMed...
  14. . Veneziano D, Tafuri A, Rivas JG, et al. Is remote live urologic surgery a reality? Evidences from a systematic review of the literature. World J Urol. 2020;38(10):2367-2376. Go to original source... Go to PubMed...
  15. . Marescaux J, Leroy J, Rubino F, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487-492. Go to original source... Go to PubMed...
  16. . 8264km-distance historic first for Prof. Breda and EAU Event. [Internet] eru.uroweb.org, 2024 [cited 2024 Dec 24]. Available from: https://erus.uroweb.org/.
  17. . Patel V, Marescaux J, Covas MM. The Humanitarian Impact of Telesurgery and Remote Surgery in Global Medicine. Eur Urol. 2024 Aug;86(2):88-89. Go to original source... Go to PubMed...
  18. . Larcher A, Belladelli F, Capitanio U, et al. Long-distance Robot-assisted Teleoperation: Every Millisecond Counts. Eur Urol. 2023;83(1):45-47. Go to original source... Go to PubMed...
  19. . Shah M, Naik N, Somani BK, et al. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study. Turk J Urol. 2020;46(Supp. 1):S27-S39. Go to original source... Go to PubMed...
  20. . Russell S, Perset K, Grobelnik M. Updates to the OECD's definition of an AI system explained [Internet]. OECD.AI, 2023 [cited 2024 Dec 29]. Available from: https://oecd.ai/en/wonk/ai-system-definition-update.
  21. . Arruda HM, Bavaresco RS, Kunst R, et al. Data Science Methods and Tools for Industry 4.0: A Systematic Lite­rature Review and Taxonomy. Sensors (Basel). 2023; 23(11):5010. Go to original source... Go to PubMed...
  22. . Checcucci E, Autorino R, Cacciamani GE, et al. Artificial intelligence and neural networks in urology: current clinical applications. Minerva Urol Nefrol. 2020;72(1):49-57. Go to original source... Go to PubMed...
  23. . Kolektiv autorů: JEDNODUŠE: Umělá inteligence. Praha, Universum, První vydání, 2023. ISBN 978-80-242-9293-9.
  24. . Hugh LE, James THT. The influence of AI in medicine; Medicine. 2024;52(12):811-815. Go to original source...
  25. . Čapoun O. Editorial. Czech urology. 2023;27(3):136. Go to original source... Go to PubMed...
  26. . Zogala D. Využití umělé inteligence v zobrazovacích metodách. Cas Lek Cesk. 2024;162(7-8):279-282.
  27. . Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol. 2020;9(2):14.
  28. . Liu X, Shi J, Li Z, et al. The Present and Future of Artificial Intelligence in Urological Cancer. J Clin Med. 2023; 12(15):4995. Go to original source... Go to PubMed...
  29. . Riaz IB, Harmon S, Chen Z, et al. Applications of Artificial Intelligence in Prostate Cancer Care: A Path to Enhanced Efficiency and Outcomes. Am Soc Clin Oncol Educ Book. 2024;44(3):e438516. Go to original source... Go to PubMed...
  30. . Cai JC, Nakai H, Kuanar S, et al. Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI. Radiology. 2024;312(2):e232635. Go to original source... Go to PubMed...
  31. . Saha A, Bosma JS, Twilt JJ, et al. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study. Lancet Oncol. 2024;25(7):879-887. Go to original source... Go to PubMed...
  32. . Forookhi A, Laschena L, Pecoraro M, et al. Bridging the experience gap in prostate multiparametric magnetic resonance imaging using artificial intelligence: A prospective multi-reader comparison study on inter-reader agreement in PI-RADS v2.1, image quality and reporting time between novi­ce and expert readers. Eur J Radiol. 2023;161:110749. Go to original source... Go to PubMed...
  33. . Eloy C, Marques A, Pinto J, et al. Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies. Virchows Arch. 2023;482(3):595-604. Go to original source... Go to PubMed...
  34. . EAU Guidelines. Edn. presented at the EAU Annual Congress Paris 2024. ISBN 978-94-92671-23-3.
  35. . Daskivich TJ, Wood LN, Skarecky D, et al. Limitations of the National Comprehensive Cancer Network® (NCCN®) Guidelines for Prediction of Limited Life Expectancy in Men with Prostate Cancer. J Urol. 2017;197(2):356-362. Go to original source... Go to PubMed...
  36. . Esteva A, Feng J, van der Wal D, et al. Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials. NPJ Digit Med. 2022;5(1):71. Go to original source... Go to PubMed...
  37. . Spratt DE, Tang S, Sun Y, et al. Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer. NEJM Evid. 2023;2(8):EVIDoa2300023. Go to original source... Go to PubMed...
  38. . Hung AJ, Chen J, Che Z, et al. Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes. J Endourol. 2018;32(5):438-444. Go to original source... Go to PubMed...
  39. . Hung AJ, Chen J, Ghodoussipour S, et al. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. 2019;124(3):487-495. Go to original source... Go to PubMed...
  40. . Sabbagh A, Tilki D, Feng J, et al. Multi-institutional Develop­ment and External Validation of a Machine Lear­ning Model for the Prediction of Distant Metastasis in Patients Treated by Salvage Radiotherapy for Biochemical Failure After Radical Prostatectomy. Eur Urol Focus. 2024;10(1):66-74. Go to original source... Go to PubMed...
  41. . LEOPARD Challenge. [Internet] Grand-Challenge.org. [cited 2024 Jan 15]. Available from: https://leopard.grand-challenge.org/leopard/.
  42. . Riaz IB, Naqvi SAA, He H, et al. First-line Systemic Treatment Options for Metastatic Castration-Sensitive Prostate Cancer: A Living Systematic Review and Network Meta-analysis. JAMA Oncol. 2023;9(5):635-645. Go to original source... Go to PubMed...
  43. . Riaz IB, He H, Ryu AJ, et al. A Living, Interactive Systematic Review and Network Meta-analysis of First-line Treatment of Metastatic Renal Cell Carcinoma. Eur Urol. 2021;80(6):712-723. Go to original source... Go to PubMed...
  44. . Brisuda A, Hrbáček J, Babjuk M. Využití fotodynamické diagnostiky a úzkopásmového zobrazení v diagnostice a léčbě svalovinu neinfiltrujících nádorů močového měchýře. Czech urology. 2023;17(2):79-87. Go to original source...
  45. . Borhani S, Borhani R, Kajdacsy-Balla A. Artificial intelligence: A promising frontier in bladder cancer diagnosis and outcome prediction. Crit Rev Oncol Hematol. 2022;171:103601. Go to original source... Go to PubMed...
  46. . Kausch I, Sommerauer M, Montorsi F, et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010;57(4):595-606. Go to original source... Go to PubMed...
  47. . Shkolyar E, Jia X, Chang TC, et al. Augmented Bladder Tumor Detection Using Deep Learning. Eur Urol. 2019;76(6):714-718. Go to original source... Go to PubMed...
  48. . Jobczyk M, Stawiski K, Fendler W, et al. Validation of EORTC, CUETO, and EAU risk stratification in prediction of recurrence, progression, and death of patients with initially non-muscle-invasive bladder cancer (NMIBC): A cohort analysis. Cancer Med. 2020;9(11):4014-4025. Go to original source... Go to PubMed...
  49. . Jobczyk M, Stawiski K, Kaszkowiak M, et al. Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non-muscle-invasive Bladder Cancer. Eur Urol Oncol. 2022;5(1):109-112. Go to original source... Go to PubMed...
  50. . Rasmussen R, Sanford T, Parwani AV, et al. Artificial Intelligence in Kidney Cancer. Am Soc Clin Oncol Educ Book. 2022;42:1-11. Go to original source... Go to PubMed...
  51. . Finelli A, Cheung DC, Al-Matar A, et al. Small Renal Mass Surveillance: Histology-specific Growth Rates in a Biopsy-characterized Cohort. Eur Urol. 2020;78(3):460-467. Go to original source... Go to PubMed...
  52. . Bhandari A, Ibrahim M, Sharma C, et al. CT-based radiomics for differentiating renal tumours: a systematic review. Abdom Radiol (NY). 2021;46(5):2052-2063. Go to original source... Go to PubMed...
  53. . Erdim C, Yardimci AH, Bektas CT, et al. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis. Acad Radiol. 2020;27(10):1422-1429. Go to original source... Go to PubMed...
  54. . Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844-853. Go to original source... Go to PubMed...
  55. . Kutikov A, Smaldone MC, Egleston BL, et al. Anatomic features of enhancing renal masses predict malignant and high-grade pathology: a preoperative nomogram using the RENAL Nephrometry score. Eur Urol. 2011;60(2):241-248. Go to original source... Go to PubMed...
  56. . Abdallah N, Wood A, Benidir T, et al. AI-generated R.E.N.A.L.+ Score Surpasses Human-generated Score in Predicting Renal Oncologic Outcomes. Urology. 2023; 180:160-167. Go to original source... Go to PubMed...
  57. . Chuluunbaatar Y, Bansal S, Brodie A, et al. The current use of artificial intelligence in testicular cancer: a systematic review. Art Int Surg. 2023;3:195-206. Go to original source...
  58. . Baessler B, Nestler T, Pinto Dos Santos D, et al. Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection. Eur Radiol. 2020;30(4):2334-2345. Go to original source... Go to PubMed...
  59. . Bini F, Pica A, Azzimonti L, et al. Artificial Intelligence in Thyroid Field-A Comprehensive Review. Cancers (Basel). 2021;13(19):4740. Go to original source... Go to PubMed...
  60. . Liu J, O'Brien JS, Nandakishor K, et al. Snap Diagnosis: Developing an Artificial Intelligence Algorithm for Penile Cancer Detection from Photographs. Cancers (Basel). 2024;16(23):3971. Go to original source... Go to PubMed...
  61. . Chen CC, Yen TH, Li JR, et al. Artificial intelligence algorithms enhance urine cytology reporting confidence in postoperative follow-up for upper urinary tract urothelial carcinoma. Int Urol Nephrol. 2024 Nov 7 - ahead of print. Go to original source... Go to PubMed...
  62. . Anastasiadis A, Koudonas A, Langas G, et al. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review. Asian J Urol. 2023; 10(3):258-274. Go to original source... Go to PubMed...
  63. . Parakh A, Lee H, Lee JH, et al. Urinary Stone Detection on CT Images Using Deep Convolutional Neural Networks: Evaluation of Model Performance and Generalization. Radiol Artif Intell. 2019;1(4):e180066. Go to original source... Go to PubMed...
  64. . Jendeberg J, Thunberg P, Lidén M. Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network. Urolithiasis. 2021;49(1):41-49. Go to original source... Go to PubMed...
  65. . Solakhan M, Seckiner SU, Seckiner I. A neural network-based algorithm for predicting the spontaneous passage of ureteral stones. Urolithiasis. 2020;48(6):527-532. Go to original source... Go to PubMed...
  66. . Shah M, Naik N, Hameed BZ, et al. Current Applications of Artificial Intelligence in Benign Prostatic Hyperplasia. Turk J Urol. 2022;48(4):262-267. Go to original source... Go to PubMed...
  67. . Bentaleb J, Larouche M. Innovative use of artificial intelligence in urogynecology. Int Urogynecol J. 2020;31(7): 1287-1288. Go to original source... Go to PubMed...




Urology for Practice

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.